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Abstract

In this article we work out the algorithm of calculating domino tilings of m × n
rectangle with some removed squares. Domino tilings in rectangle m × n are also
known as perfect matchings of graph Pm × Pn or as dimer problem. Research on
dimers in statistical mechanics had a major breakthrough in 1961, when Kasteleyn
(and, independently, Temperley&Fisher) discovered a Pfaffian method to count the
matchings of subgraph of the infinite square lattice and introduced remarkable formula
⌈

m
2 ⌉
∏

j=1

⌈

n
2 ⌉
∏

k=1

(

4cos2 �j
m+1

+ 4cos2 �k
n+1

)

, which calculates the number of all possible domino

tilings ofm×n rectangle, for case whenmn is even. Since there is no perfect matching
for case, when mn is odd, the first goal for us was to study the number of all possible
maximum matchings for this case, whereas it is no different from domino tilings of
the rectangle m×n with one removed square. Our calculating method is similar to the
method of David Klarner and Jordan Polack, which is calculating domino tilings of
rectangles with fixed width and differs completely from the known Pfaffian method.

Keywords: domino tilings, dimers, maximum matchings, fixed width, adjacency
matrices, Pm × Pn

1 Introduction
Previously, David Klarner and Jordan Polack [1] have constructed bijection between set of
domino tilings of rectangles with fixed width and class of paths in certain graph. Also they
used adjacency matrices to calculate the cardinality of this class.
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Consider a m× n tiling, and consider the vertical line segments of length m a unit apart
which cut across the rectangle into columns. Every such cross section is encoded as a vector
u = (u1,… , um) ∈ ℤm

2 as follows: ui = 1 if the line cuts through a horizontal domino in itℎ
row, otherwise ui = 0. So every domino tiling of rectanglem×n corresponds to a sequence
of ℤm

2 vectors of length n + 1. Since no domino lies on the boundaries of the rectangle,
the first and last cross sections are zero vectors. Let ℤm

2 be the vertex set of Gm, and let

Figure 1: Cross sections (from left to right):(000),(100),(011),(100),(000)

u, v ∈ ℤm
2 . Then (u, v) forms a directed edge in Gm just when two successive cuts in a strip

m units wide tiled with dominoes gives rise to u and v going from left to right. (Note that
u and v may occur in a strip tiled with dominoes, but not necessarily in a rectangle tiled
with dominoes.) It follows from these definitions that there is a one-to-one correspondence
between paths of length n which begin and end at zero vectors in Gm and the m× n tilings.

In our work we extend this approach for rectangles with removed squares.

2 Column Tilings
Definition 2.1. Let Em be the set of edges of graph Gm as it was defined in the previous
section.

Every edge in Em is a pair of left and right cross sections of column tiled by dominoes.
Left cross section indicates horizontal dominoes crossing left border of this column and
the same on the right side. All the rest is covered by vertical dominoes.

Definition 2.2. Let columns with width m covered by dominoes as described above be
called m-tilings.

In this section, we correspond every edge (u, v) ∈ Em to an m-tilings with left cross
section u and right cross section v. So set Em can be also considered as a set of m-tilings.

Definition 2.3. LetEm be a subset ofEm containing only one edge: loop that connects zero
vector of ℤm

2 to itself.

2



Figure 2: 4-tilings (from left to right):
(1000,0001), (0000,0011), (0100,1000), (0000,0000), (1010,0101)

In other words, m-tiling implies a column of width m with 0⃗ cross sections from the
both sides, so no domino can intersect this column. This part we refer to vertical line of
removed squares.

Definition 2.4. Let �1|�2|⋯ |�k-tiling be a vertical join (one under another) of �i-tilings,
where every �i-tiling is mi-tiling or mi-tiling. Let �1|�2|⋯ |�k be called a class of column
tilings.

In this way we explain columns with some removed squares: mi is a part of column
which is removed (not tiled by dominoes), whereas mi is a part which is tiled by dominoes
in free way.

For example, 1|3|2|1 represents set of domino tilings of 7 width column with 1st, 4tℎ
and 5tℎ squares removed.

Definition 2.5. Let E�1|�2|⋯|�k be a set of all edges corresponding to �1|�2|⋯ |�k-tilings.

In this section, edges of Gm have been considered as m-tilings. As well some classes of
m-tilings have been highlighted.

As it was said we investigate paths in graph Gm to calculate number of domino tilings.
In the case when one or some squares are removed from rectangle, paths are still paths,
but with certain limitations (in certain intervals), because no domino can cover removed
squares. Later, we will calculate paths in the graph Gm with periodically changing set of
edges.

3 Adjacency Matrices
Definition 3.1. Let A� be an adjacency matrix of graph G(ℤm

2 , E�), where � is a class of
m-tilings.

Theorem 3.1. If � and � be classes of column tilings, then

A�|� = A� ⊗A�
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Proof. Both sides are binary matrices of order 2|�|+|�|. Let (u, v) entry of A�|� on LHS be
the product of (u1, v1) entry of A� and (u2, v2) entry of A� on RHS.

By the definition 3.1 (u, v) entry of A�|� is "1" if (u, v) ∈ E�|�, otherwise (u, v) entry is
"0".

Let’s say that (u, v) entry is "1". Then according to the definition 2.5 (u, v) is �|�-tiling.
That is true if only (u1, v1) is �-tiling and (u2, v2) is �-tiling. Which means that (u1, v1) and
(u2, v2) entries are both "1" and their product is "1" too.

If (u, v) entry is "0". Then (u, v) is not �|�-tiling and both of (u1, v1) and (u2, v2) cannot
be �-tiling and �-tiling, respectively. Which means that at least one of (u1, v1) and (u2, v2)
entries is "0". So their product is "0" too.

So LHS and RHS are equal matrices. ■

Corollary 3.1.1. A�1|�2|⋯|�k = A�1 ⊗A�2 ⊗⋯⊗A�k

Corollary 3.1.2. A0 = [1]

Proof. A0 is supposed to be 20 × 20 matrix. Moreover, A� = A�|0 = A� ⊗A0. ■

Theorem 3.2. Am = Am1|m2
+ Am1−1|2|m2−1

, where m = m1 + m2.

Proof. It is enough to show that Em = Em1|m2

⋃

Em1−1|2|m2−1
.

Set of m-tilings can be divided into two subsets: 1) m-tilings with a vertical domino
covering both of mtℎ1 and (m1 + 1)tℎ squares of column; 2) and without vertical domino on
the same place. First subset is set ofm1|m2-tilings and second ism1−1|2|m2−1-tilings. ■

Corollary 3.2.1. Am+2 = A1 ⊗Am+1 + A2 ⊗Am.

Proof. From theorem 3.2 for m1 = 1 it follows that Am+2 = A1|m+1 + A2|m. And from
corollary 3.1.1 it follows that A1|m+1 = A1 ⊗Am+1 and A2|m = A2 ⊗Am. ■

Remark. Let vertices in graphG(ℤm
2 , E�) be ordered and numbered in lexicographical order

starting with 0⃗ and ending with 1⃗ for any �.

Proposition 3.3. A1 =
[

0 1
1 0

]

, A1 =
[

1 0
0 0

]

,

A2 =

⎡

⎢

⎢

⎢

⎣

1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎦

, A2 =

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎦
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Proof. Since E1 = {({1}, {0}), ({0}, {1})}, A1 is 2 × 2 matrix with two "1".
For any m ∈ ℕ matrix Am is 2m × 2m matrix with "1" in (1, 1) entry and "0" in all other

entries, because Em = {(0⃗, 0⃗)}.
According to corollaries 3.2.1 and 3.1.2

A2 = A1 ⊗A1 + A2 ⊗A0 =

=
[

0 1
1 0

]

⊗
[

0 1
1 0

]

+

⎡

⎢

⎢

⎢

⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎦

⊗ [1] =

⎡

⎢

⎢

⎢

⎣

1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎦

■

Remark. Using recurrence relation (corollary 3.2.1) and initial data (proposition 3.3) we
can calculate matrix Am for any m ∈ ℕ:

Am+2 =
⎡

⎢

⎢

⎣

Am 02m,2m
02m,2m 02m,2m

Am+1

Am+1 02m+1,2m+1

⎤

⎥

⎥

⎦

Then using corollary 3.1.1 we can calculate matrix A� for any �.
For example,

A1|2|1 = A1 ⊗A2 ⊗A1 =
[

0 1
1 0

]

⊗

⎡

⎢

⎢

⎢

⎣

1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎦

⊗
[

1 0
0 0

]

=

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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4 Domino Tilings and Paths
Let’s consider a columnC with one or some removed squares in stripm units wide tiled with
dominoes. Let n0, r1, n1,… rk, nk be an alternating sequence of removed and non-removed
squares in this column C , where ri is length of itℎ continuous sequence of removed squares
and ni of non-removed. n0 = 0 if first square turned out to be removed and nk = 0 if
last square turned out to be removed. All other ni and ri are positive. Clearly, all possible
domino tilings of this column are n0|r1|n1|… |rk|nk-tilings.

Further, for convenience we will denote all possible domino tilings of column C as C-
tilings. Respectively, EC is a set of edges corresponding to C-tilings and AC is adjacency
matrix of graph G(ℤm

2 , EC). The point is that we know how to calculate matrix AC for any
column C .

Theorem 4.1. Let R be m × n rectangle with one or some removed squares. Then (1, 1)
entry of the matrix AC1

AC2
⋯ACn is equal to the number of all possible domino tilings of

the rectangle R, where Ci is itℎ column of the rectangle R.

Proof. As it was said before, there is one-to-one correspondence between domino tilings
and paths. Here we consider domino tiling of the rectangle R as a sequence of Ci-tilings.
EveryCi-tiling is edge of graphG(ℤm

2 , EC). So number of all such sequences is the number
of all possible sequences (paths) v0, v1,… , vn, where (vi−1, vi) ∈ ECi and v0 = vn = 0⃗.
Vertices v0 and vn should be 0⃗, because left and right borders of the rectangle are straight
and not intersected by any domino.

According to the property of adjacency matrices the number of such paths is equal to
(0⃗, 0⃗) entry of the matrix AC1

⋅ AC2
⋯ACn . ■

For example, number of domino tilings of 3 × 3 square with removed (2, 2) square is
equal to (1, 1) entry of the matrix A3 ⋅ A1|1|1 ⋅ A3. Calculating:

A3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 1 0 0 1
1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, A1|1|1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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So

A3 ⋅ A1|1|1 ⋅ A3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 1
1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Obviously, there are two possible domino tilings:

Figure 3: Domino tilings of 3 × 3 rectangle with (2, 2) square removed

Onemore example, letR be 4×7 rectanglewith four removed squares: (1, 3), (4, 3), (1, 6), (2, 6).
Then number of domino tilings of R is equal to (1, 1) entry of this matrix:

A2
4 ⋅ A1|2|1 ⋅ A

2
4 ⋅ A2|2 ⋅ A4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

82 0 0 47 0 0 0 0 0 47 0 0 82 0 0 47
0 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0
0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0
28 0 0 16 0 0 0 0 0 16 0 0 28 0 0 16
0 0 4 0 0 0 0 0 4 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 15 0 0 0 0 0 15 0 0 26 0 0 15
0 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14 0 0 8 0 0 0 0 0 8 0 0 14 0 0 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 16 0 0 0 0 0 16 0 0 28 0 0 16
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14 0 0 8 0 0 0 0 0 8 0 0 14 0 0 8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

5 (u, v)−Rectangle
Definition 5.1. Let u, v ∈ ℤm

2 . Let m units wide rectangle with cross section u on the left
board and with cross section v on the right board be called (u, v)−rectangle.
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In other words, (u, v)−rectangle is rectangle with some removed squares on the first
and the last columns. For example, this is (10010, 01000)-rectangle of length 7:

Definition 5.2. Let t(u, v, n) be the number of (u, v)−rectangle of length n. And let

T (u, v, z) =
∑

i=0
t(u, v, i)zi

Remark. For n = 0 the sequence is defined in the following way:

t(u, v, 0) =

{

1, if u = v
0, otherwise

Theorem 5.1. (u, v) entry of the matrix (I − zAm)−1 is equal to T (u, v, z).

Proof. It is clear that the following recurrence relation holds

t(u, v, n + 1) =
∑

(w,v)∈Em

t(u,w, n)

Consequently,
T (u, v, z) = z

∑

(w,v)∈Em

T (u,w, z) + t(u, v, 0)

Let matrix Tm be a matrix {T (u, v, z)}. Then these recurrence relations can be represented
in the matrix form:

Tm = zTmAm + I

Therefore,
Tm = (I − zAm)−1

■
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6 Rectangle with one removed square
In the section 4 we have described method of calculating the number of domino tilings of
m×n rectangle with some removed squares for certain natural values. Calculating numbers
of domino tilings ofm×n rectangle with exactly on removed square led us to the interesting
fact. The number of domino tilings is the same if any of border squares is removed. For
example,

4140081 0 4140081 0 4140081 0 4140081
0 2483688 0 2748768 0 2483688 0

4140081 0 4299761 0 4299761 0 4140081
0 2786136 0 3195736 0 2786136 0

4140081 0 4346673 0 4346673 0 4140081
0 2786136 0 3195736 0 2786136 0

4140081 0 4299761 0 4299761 0 4140081
0 2483688 0 2748768 0 2483688 0

4140081 0 4140081 0 4140081 0 4140081

Figure 4: Number written in every square of 9×7 rectangle indicates the number of domino
tilings of the rectangle with corresponding square removed.

Theorem 6.1. Number of domino tilings of (2m − 1) × (2n − 1) with one border square
removed is equal to number of spanning trees of the graph Pm × Pn.

Proof. LetG denote the (2m−1)×(2n−1) lattice; its points are (i, j) for 0 ≤ i ≤ 2m−2, 0 ≤
j ≤ 2n−2). Call point (i, j) black if i and j are both even; red if both are odd; green if sum
of them is odd. The black points form an m × n lattice graph . Let T be any spanning tree
ofH . Let a = (0, 2s), 0 ≤ s ≤ n− 1 and x ≠ a, a black point. Then there is a well-defined
first edge on the path in connecting x to a and this contains a green point x′. Let y be a
red point. In the lattice of red points, there is a unique path not crossing T which connects
y to the outside boundary of the lattice G and on this, there is a first edge which contains a
green point. Let y′ be this green point.

The pairs (x, x′), (y, y′) form, as is easily verified, a 1-factor of G − a. Conversely, lot
F be a 1-factor of G − a. Consider the set of those edges of which contain an edge of
F . These form a spanning tree. In fact, the number of edges of F adjacent to black points
is mn − 1, so contains mn − 1 = |V (H)| − 1 edges; it suffices to prove they do not form
circuit. Suppose, by way of contradiction, that they form a circuit C . The number of points
of G inside C is odd (this easily follows, e.g. by induction on the length of C) and so, F
cannot match them, a contradiction.
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Thus we have established a one-to-one correspondence between spanning trees of ,
which is Pm ×Pn graph and 1-factors of G a i.e. domino tilings of (2m−1) × (2n−1) with
one removed border square. ■

6.1 Rectangle 3 × (2n + 1)
Theorem 6.2. Let d(i, j) be the number of domino tilings of 3 × (2n + 1) rectangle with
(i, j) square removed. Then

d(1, 2j + 1) = d(3, 2j + 1) = a(n)

d(2, 2j) = 2a(n − j) ⋅ a(j − 1)
where

a(n) = 1

2
√

3

(

(

2 +
√

3
)n+1

−
(

2 −
√

3
)n+1

)

And d(i, j) = 0 if i + j is odd.

Proof. We consider this problem in this way. If (u, v) is a tiling of column with removed
square, then domino tiling of 3 × (2n + 1) rectangle appears to be a join of domino tilings
of (0⃗, u)-rectangle and (v, 0⃗)-rectangle. Thereby, number of domino tilings is equal to

t(0⃗, u, s) ⋅ t(v, 0⃗, 2n − s) (1)

for any (u, v), where s is a length of (0⃗, u)-rectangle.
If square (1, 2j +1) is removed from 3 × (2n+1) rectangle, then (2j +1)tℎ column has

five possible 1|2-tilings:

(000, 000), (000, 011), (011, 000), (010, 001), (001, 010)

Two of them, (010, 001) and (001, 010) do not fit, because numbers of squares in both of
(left and right) remaining parts of the rectangle would be odd. Hence domino tilings are
impossible for these two cases. Shortly, t(000, 010, 2j) = t(000, 001, 2j) = 0.

Therefore, according to (1)

d(1, 2j + 1) =t(000, 000, 2j) ⋅ t(000, 000, 2n − 2j) + t(000, 011, 2j)⋅
⋅ t(000, 000, 2n − 2j) + t(000, 000, 2j) ⋅ t(011, 000, 2n − 2j)

(2)

Let a(n) be z2n coefficient of power series 1
1−4z2+z4

. Then

a(n) = 1

2
√

3

(

(

2 +
√

3
)n+1

−
(

2 −
√

3
)n+1

)

(3)
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According to the theorem 5.1:

T (000, 000, z) = 1 − z2

1 − 4z2 + z4
, T (000, 011, z) = z2

1 − 4z2 + z4
Consequently,

t(000, 000, 2j) = a(j) − a(j − 1), t(000, 011, 2j) = t(011, 000, 2j) = a(j − 1) (4)
After substituting (4) to (2) we get

d(1, 2j + 1) = a(j) ⋅ a(n − j) − a(j − 1) ⋅ a(n − j − 1) (5)
Then after using (3) to calculate (5) we have:

d(1, 2j + 1) = 1

2
√

3

(

(

2 +
√

3
)n+1

−
(

2 −
√

3
)n+1

)

So, d(1, 2j + 1) = d(3, 2j + 1) = a(n).
If square (2, 2j) is removed from 3 × (2n + 1) rectangle, then (2j)tℎ column has four

possible 1|1|1-tilings:
(101, 000), (000, 101), (100, 001), (001, 100)

Because of the oddity of square numbers of remaining left and right part of the rectangle,
cases (101, 000), (000, 101) are impossible. Therefore,

d(2, 2j) = t(000, 001, 2j − 1) ⋅ t(100, 000, 2n − 2j + 1)+
+ t(000, 100, 2j − 1) ⋅ t(001, 000, 2n − 2j + 1)

(6)

According to the theorem 5.1:

T (000, 100, z) = T (000, 001, z) = z
1 − 4z2 + z4

Consequently,
t(000, 001, 2j − 1) = t(000, 100, 2j − 1) = a(j − 1),
t(001, 000, 2n − 2j + 1) = t(100, 000, 2n − 2j + 1) = a(n − j)

(7)

After substituting (7) to (6) we get:
d(2, 2j) = 2a(n − j) ⋅ a(j − 1)

If we apply chess coloring to 3 × (2n + 1) rectangle, number of black colored squares
will be one more than number of white colored. Hence there is no perfect matching, if
white colored square is removed, because every domino covers one white and one black
squares exactly. Thus d(i, j) = 0 if i + j is odd. ■

Corollary 6.2.1. The number of domino tilings of 3 × (2n + 1) rectangle is the same for
any square removed from the border.
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6.2 Rectangle 5 × (2n + 1)
Theorem 6.3. The number of domino tilings of 5 × (2n + 1) rectangle is the same for any
square removed from the border and is equal to

1
√

105 ⋅ 4n+1

[ ((

3 +
√

5
)(

5 +
√

21
))n+1

−
((

3 +
√

5
)(

5 −
√

21
))n+1

−

−
((

3 −
√

5
)(

5 +
√

21
))n+1

+
((

√

5 − 3
)(

√

21 − 5
))n+1 ]

(8)

Proof. Let square (1, 2j + 1) be removed from 5 × (2n + 1) rectangle. Then (2j + 1)tℎ

column has 13 possible 1|4-tilings:

(v1, v1), (v1, v4), (v4, v1), (v1, v10), (v10, v1), (v13, v1), (v1, v13),
(v1, v16), (v16, v1), (v7, v10), (v10, v7), (v4, v13), (v13, v4)

(9)

where vi ∈ ℤ5
2:

v1 = (00000), v4 = (00011), v7 = (00110),
v10 = (01001), v13 = (01100), v16 = (01111)

(10)

All other 1|4-tilings do not fit because of the parity of left and right parts of the rectangle.
Therefore, according to (1)

d(1, 2j + 1) =
∑

(u,v)∈S
t(0⃗, u, 2j) ⋅ t(v, 0⃗, 2n − 2j) (11)

where S is set of suitable 1|4-tilings listed in (9).
Let b[n] be z2n coefficient of power series 1

1−15z2+32z4−15z6+z8
. Then

b[n] = 1
√

105 ⋅ 22n+7

[

(

−16 + 3
√

5 + 5
√

21
)((

3 +
√

5
)(

5 −
√

21
))n+1

+

+
(

16 − 3
√

5 + 5
√

21
)((

3 +
√

5
)(

5 +
√

21
))n+1

+

+
(

16 + 3
√

5 − 5
√

21
)((

√

5 − 3
)(

√

21 − 5
))n+1

+

+
(

−16 − 3
√

5 − 5
√

21
)((

3 −
√

5
)(

5 +
√

21
))n+1

]

(12)
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According to the theorem 5.1:

T (0⃗, v1, z) =
1 − 7z2 + 7z4 − z6

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v4, z) =
z2(3 − 4z2 + z4)

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v7, z) =
z2(2 − 5z2 + z4)

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v10, z) =
z2 + z4

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v13, z) =
z2(2 − 5z2 + z4)

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v16, z) =
z2 − z6

1 − 15z2 + 32z4 − 15z6 + z8

(13)

Consequently,

t(0⃗, v1, 2n) = b[n] − 7b[n − 1] + 7b[n − 2] − b[n − 3]

t(0⃗, v4, 2n) = 3b[n − 1] − 4b[n − 2] + b[n − 3]

t(0⃗, v7, 2n) = 2b[n − 1] − 5b[n − 2] + b[n − 3]

t(0⃗, v10, 2n) = b[n − 1] + b[n − 2]

t(0⃗, v13, 2n) = 2b[n − 1] − 5b[n − 2] + b[n − 3]

t(0⃗, v16, 2n) = b[n − 1] − b[n − 3]

(14)

After substituting (14) to (11) and calculating it with (12) we get:

d(1, 2j + 1) = 1
√

105 ⋅ 4n+1

[ ((

3 +
√

5
)(

5 +
√

21
))n+1

−
((

3 +
√

5
)(

5 −
√

21
))n+1

−

−
((

3 −
√

5
)(

5 +
√

21
))n+1

+
((

√

5 − 3
)(

√

21 − 5
))n+1 ]

(15)

Let square (3, 1) be removed from 5 × (2n + 1) rectangle. It is clear that

d(3, 1) = t(00100, 00000, 2n + 1) (16)

According to the theorem 5.1

T (00100, 00000, z) = z − z5

1 − 15z2 + 32z4 − 15z6 + z8
(17)

13



Thus,
t(00100, 00000, 2n + 1) = b[n] − b[n − 2] (18)

Drawing a conclusion from (16) and (19) and calculating using (12) lead us to:

d(3, 1) = 1
√

105 ⋅ 4n+1

[ ((

3 +
√

5
)(

5 +
√

21
))n+1

−
((

3 +
√

5
)(

5 −
√

21
))n+1

−

−
((

3 −
√

5
)(

5 +
√

21
))n+1

+
((

√

5 − 3
)(

√

21 − 5
))n+1 ]

(19)

Since rectangle is self-similar figure d(1, 2j +1) = d(5, 2j +1) and d(3, 1) = d(3, 2n+1).
Eventually,

d(1, 2j + 1) = d(5, 2j + 1) = d(3, 1) = d(3, 2n + 1) = (8) (20)

for any j ∈ (1, n). ■

Theorem 6.4. Let d(i, j) be the number of domino tilings of 5 × (2n + 1) rectangle with
(i, j) square removed. Then

d(2, 2j) = d(4, 2j) = 1
105 ⋅ 22n

[

(

1080 − 476
√

5 + 236
√

21 − 104
√

105
)((

3 −
√

5
)(

5 +
√

21
))n−1

+

+
(

1080 − 476
√

5 − 236
√

21 + 104
√

105
)((

3 −
√

5
)(

5 −
√

21
))n−1

+

+
(

1080 + 476
√

5 − 236
√

21 − 104
√

105
)((

3 +
√

5
)(

5 −
√

21
))n−1

+

+
(

1080 + 476
√

5 + 236
√

21 + 104
√

105
)((

3 +
√

5
)(

5 +
√

21
))n−1

+

+
√

21
(

(

5 −
√

21
)n+1

−
(

5 +
√

21
)n+1

)(

(

3 −
√

5
)j−1 (

3 +
√

5
)n−j

+
(

3 +
√

5
)j−1 (

3 −
√

5
)n−j

)

+

+
√

5
(

(

3 −
√

5
)n+1

−
(

3 +
√

5
)n+1

)(

(

5 −
√

21
)j−1 (

5 +
√

21
)n−j

+
(

5 +
√

21
)j−1 (

5 −
√

21
)n−j

)]

(21)

and

d(3, 2j + 1) = 1
105 ⋅ 4n+1

⋅
[

4
(

(

3 −
√

5
)n+1

+
(

3 +
√

5
)n+1

)(

(

5 −
√

21
)j (

5 +
√

21
)n−j

+
(

5 +
√

21
)j (

5 −
√

21
)n−j

)

−

− 4
(

(

5 −
√

21
)n+1

+
(

5 +
√

21
)n+1

)(

(

3 −
√

5
)j (

3 +
√

5
)n−j

+
(

3 +
√

5
)j (

3 −
√

5
)n−j

)

+

+
(

11 +
√

105
)

(

1
2

((

3 −
√

5
)(

5 −
√

21
))n+1

+ 1
2

((

3 +
√

5
)(

5 +
√

21
))n+1

−

− 2
((

3 +
√

5
)(

5 −
√

21
))j ((

3 −
√

5
)(

5 +
√

21
))n−j

− 2
((

3 −
√

5
)(

5 +
√

21
))j ((

3 +
√

5
)(

5 −
√

21
))n−j

)

+

+
(

11 −
√

105
)

(

1
2

((

3 +
√

5
)(

5 −
√

21
))n+1

+ 1
2

((

3 −
√

5
)(

5 +
√

21
))n+1

−

− 2
((

3 −
√

5
)(

5 −
√

21
))j ((

3 +
√

5
)(

5 +
√

21
))n−j

− 2
((

3 +
√

5
)(

5 +
√

21
))j ((

3 −
√

5
)(

5 −
√

21
))n−j

)]

(22)

and d(i, j) = 0 if i + j is odd.
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Proof. Since square (4, 2j) is symmetric to square (2, 2j) in 5×(2n+1) rectangle, obviously
d(2, 2j) = d(4, 2j). If square (2, 2j) is removed from 5 × (2n+ 1), then according to chess
coloring principle (2j)tℎ column has ten possible 1|1|3-tilings:

(v2, v17), (v17, v2), (v5, v17), (v17, v5), (v5, v20),
(v20, v5), (v2, v23), (v23, v2), (v8, v17), (v17, v8)

(23)

where vi ∈ ℤ5
2:

v2 = (00001), v5 = (00100), v8 = (00111),
v17 = (10000), v20 = (10011), v23 = (10110)

(24)

Therefore, according to (1)

d(2, 2j) =
∑

(u,v)∈S
t(0⃗, u, 2j − 1) ⋅ t(v, 0⃗, 2n − 2j + 1) (25)

where S is set of suitable 1|1|3-tilings listed in (23). According to the theorem 5.1:

T (0⃗, v2, z) =T (0⃗, v5, z) = T (0⃗, v17, z) =
z − z5

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v8, z) =
z − 4z3 + 3z5

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v20, z) =
z − 5z3 + 2z5

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v23, z) =
z3 + z5

1 − 15z2 + 32z4 − 15z6 + z8

(26)

Consequently,

t(0⃗, v2, 2n + 1) = t(0⃗, v5, n) = t(0⃗, v17, n) = b[n] − b[n − 2]

t(0⃗, v8, 2n + 1) = b[n] − 4b[n − 1] + 3b[n − 2]

t(0⃗, v20, 2n + 1) = b[n] − 5b[n − 1] + 2b[n − 2]

t(0⃗, v23, 2n + 1) = b[n − 1] + b[n − 2]

(27)

After substituting (27) to (25) and calculating it with (12) we get (21).
If square (3, 2j + 1) is removed from 5 × (2n + 1), then according to chess coloring

principle (2j + 1)tℎ column has 11 possible 2|1|2-tilings:

(v1, v1), (v1, v4), (v4, v1), (v1, v25), (v25, v1), (v4, v25)
(v25, v4), (v1, v28), (v28, v1), (v10, v19), (v19, v10)

(28)
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where vi ∈ ℤ5
2:

v1 = (00000), v4 = (00011), v10 = (01001),
v19 = (10010), v25 = (11000), v28 = (11011)

(29)

Therefore, according to (1)

d(2, 2j + 1) =
∑

(u,v)∈S
t(0⃗, u, 2j) ⋅ t(v, 0⃗, 2n − 2j) (30)

where S is set of suitable 2|1|2-tilings listed in (28). According to the theorem 5.1:

T (0⃗, v1, z) =
1 − 7z2 + 7z4 − z6

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v4, z) = T (0⃗, v25, z) =
z2(3 − 4z2 + z4)

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v10, z) = T (0⃗, v19, z) =
z2 + z4

1 − 15z2 + 32z4 − 15z6 + z8

T (0⃗, v28, z) =
z2 − z6

1 − 15z2 + 32z4 − 15z6 + z8

(31)

Consequently,

t(0⃗, v1, 2n) = b[n] − 7b[n − 1] + 7b[n − 2] − b[n − 3]

t(0⃗, v4, 2n) = t(0⃗, v25, 2n) = 3b[n − 1] − 4b[n − 2] + b[n − 3]

t(0⃗, v10, 2n) = t(0⃗, v19, 2n) = b[n − 1] + b[n − 2]

t(0⃗, v28, 2n + 1) = b[n − 1] − b[n − 3]

(32)

After substituting (32) to (30) and calculating it with (12) we get (22). ■
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